66. $$\eqalign{
& {\text{If}} \cr
& {\text{I = }}\frac{3}{4} \div \frac{5}{6}{\text{,}} \cr
& {\text{II = 3}} \div \left[ {\left( {4 \div 5} \right) \div 6} \right]{\text{,}} \cr
& {\text{III = }}\left[ {{\text{3}} \div \left( {4 \div 5} \right)} \right] \div {\text{6,}} \cr
& {\text{IV = 3}} \div {\text{4}} \div \left( {5 \div 6} \right), \cr
& {\text{Then - }} \cr} $$
67. The least number that must be subtracted from 63522 to make the result a perfect square is = ?
68. The simplification of $$\frac{5}{{3 + \frac{3}{{1 - \frac{2}{3}}}}}\, = ?$$
69. Simplify : $$\left[ {\left( {1 + \frac{1}{{10 + \frac{1}{{10}}}}} \right) \times \left( {1 + \frac{1}{{10 + \frac{1}{{10}}}}} \right) - \left( {1 - \frac{1}{{10 + \frac{1}{{10}}}}} \right) \times \left( {1 - \frac{1}{{10 + \frac{1}{{10}}}}} \right)} \right] \div \left[ {\left( {1 + \frac{1}{{10 + \frac{1}{{10}}}}} \right) + \left( {1 - \frac{1}{{10 + \frac{1}{{10}}}}} \right)} \right] = ?$$
70. If the expression $${\text{2}}\frac{1}{2}{\text{ of }}\frac{3}{4} \times \frac{1}{2} \div \frac{3}{2} + \frac{1}{2} \div \frac{3}{2}\left[ {\frac{2}{3} - \frac{1}{2}{\text{ of }}\frac{2}{3}} \right]$$ is simplified, we get -
Read More Section(Simplification)
Each Section contains maximum 70 questions. To get more questions visit other sections.