51. Two fractions are such that their product is -4 and sum is $$\frac{{ - 32}}{{15}}.$$ Find the two fractions.
52. Simplify the expression, $$25 - \left[ {16 - \left\{ {14 - \left( {18 - \overline {8 + 3} } \right)} \right\}} \right]$$
53. Find the value of $$a$$ in the following equation. (Given: $$a$$ < 10.)
$$\frac{{\left( {187 \div 17 \times a - 3 \times 3} \right)}}{{\left( {{8^2} - 9 \times 7 + {a^2}} \right)}} = 1$$
$$\frac{{\left( {187 \div 17 \times a - 3 \times 3} \right)}}{{\left( {{8^2} - 9 \times 7 + {a^2}} \right)}} = 1$$
54. The value of 15.2 + 5.8 ÷ 2.9 × 2 - 3.5 × 2 ÷ 0.5 is equal to:
55. The value of $$\frac{{27 \times {{\left( {0.25} \right)}^3} + 125{{\left( {0.05} \right)}^3}}}{{{{\left( {0.75} \right)}^2} - 0.25 \times 0.5}}$$ is:
56. The value of $$0.\overline {45} \times 1.\overline {22} $$ is:
57. The value of $$22.\overline 4 + 11.5\overline {67} - 33.5\overline 9 $$ is:
58. Find the value of $$309 \div \left[ {\left( {\frac{3}{2}} \right){\text{of}}\left( {25 + 35} \right) - 12\frac{3}{4}} \right]$$
59. If a = -12, b = -6 and c = 18, then what is the value of $$\frac{{2{\text{abc}}}}{9}.$$
60. If $$M = \frac{3}{7} \div \frac{6}{5} \times \frac{2}{3} + \frac{1}{5} \times \frac{3}{2}$$ and $$N = \frac{2}{5} \times \frac{5}{6} \div \frac{1}{3} + \frac{3}{5} \times \frac{2}{3} \div \frac{3}{5},$$ then what is the value of $$\frac{M}{N}$$?
Read More Section(Simplification)
Each Section contains maximum 100 MCQs question on Simplification. To get more questions visit other sections.