For an equilateral triangle, the ratio of the in-radius and the outer-radius is
A. 1 : 2
B. 1 : 3
C. 1 : √2
D. 1 : √3
Answer: Option A
Solution (By Examveda Team)
Let the side of equilateral ΔABC be a & r = in-radius & R = outer radius
$$\eqalign{ & r = \frac{a}{{2\sqrt 3 }},\,\,\,R = \frac{a}{{\sqrt 3 }} \cr & r:R = \frac{a}{{2\sqrt 3 }}:\frac{a}{{\sqrt 3 }} = 1:2 \cr} $$
Related Questions on Geometry
A. $$\frac{{23\sqrt {21} }}{4}$$
B. $$\frac{{15\sqrt {21} }}{4}$$
C. $$\frac{{17\sqrt {21} }}{5}$$
D. $$\frac{{23\sqrt {21} }}{5}$$
In the given figure, ∠ONY = 50° and ∠OMY = 15°. Then the value of the ∠MON is

A. 30°
B. 40°
C. 20°
D. 70°


Join The Discussion