If in the following figure (not to the scale), ∠ACB = 135° and the radius of the circle is 2√2 cm, then the length of the chord AB is

A. 3√2 cm
B. 4√2 cm
C. 4 cm
D. 6 cm
Answer: Option C
Solution (By Examveda Team)

$$\eqalign{ & {\text{Hence }}A{B^2} = {\left( {2\sqrt 2 } \right)^2} + {\left( {2\sqrt 2 } \right)^2} \cr & A{B^2} = 8 + 8 \cr & A{B^2} = 16 \cr & AB = \sqrt {16} \cr & AB = 4 \cr} $$
Related Questions on Geometry
A. $$\frac{{23\sqrt {21} }}{4}$$
B. $$\frac{{15\sqrt {21} }}{4}$$
C. $$\frac{{17\sqrt {21} }}{5}$$
D. $$\frac{{23\sqrt {21} }}{5}$$
In the given figure, ∠ONY = 50° and ∠OMY = 15°. Then the value of the ∠MON is

A. 30°
B. 40°
C. 20°
D. 70°


Join The Discussion