In a triangle PQR, ∠PQR = 90°, PQ = 10 cm and PR = 26 cm, then what is the value (in cm) of inradius of incircle?
A. 9
B. 4
C. 8
D. 6
Answer: Option B
Solution (By Examveda Team)

$$\eqalign{ & QR = \sqrt {{{\left( {26} \right)}^2} - {{\left( {10} \right)}^2}} \cr & = \sqrt {676 - 100} \cr & = \sqrt {576} \cr & = 24 \cr & {\text{Incirde radius in a right angled triangle }}\left( r \right) \cr & = \frac{{{\text{P}} + {\text{B}} - {\text{H}}}}{2} \cr & = \frac{{10 + 24 - 26}}{2} \cr & = \frac{8}{2} \cr & = 4{\text{ cm}} \cr} $$
Related Questions on Geometry
A. $$\frac{{23\sqrt {21} }}{4}$$
B. $$\frac{{15\sqrt {21} }}{4}$$
C. $$\frac{{17\sqrt {21} }}{5}$$
D. $$\frac{{23\sqrt {21} }}{5}$$
In the given figure, ∠ONY = 50° and ∠OMY = 15°. Then the value of the ∠MON is

A. 30°
B. 40°
C. 20°
D. 70°


Join The Discussion