In the given figure, if $$\frac{{{\text{QR}}}}{{{\text{XY}}}} = \frac{{14}}{9}$$ and PY = 18 cm, then what is the value (in cm) of PQ?

A. 28
B. 18
C. 21
D. 24
Answer: Option A
Solution (By Examveda Team)

$$\eqalign{ & \angle QXY = {120^ \circ } \cr & \angle PXY = {60^ \circ } \cr & \Delta PXY \sim \Delta PRQ \cr & \therefore \frac{{PY}}{{PQ}} = \frac{{XY}}{{QR}} \cr & \frac{{18}}{{PQ}} = \frac{9}{{14}} \cr & PQ = \frac{{18 \times 14}}{9} = 28\,{\text{cm}} \cr} $$
Related Questions on Geometry
A. $$\frac{{23\sqrt {21} }}{4}$$
B. $$\frac{{15\sqrt {21} }}{4}$$
C. $$\frac{{17\sqrt {21} }}{5}$$
D. $$\frac{{23\sqrt {21} }}{5}$$
In the given figure, ∠ONY = 50° and ∠OMY = 15°. Then the value of the ∠MON is

A. 30°
B. 40°
C. 20°
D. 70°


Join The Discussion