In the given figure, SX is tangent. SX = OX = OR. If QX = 3 cm and PQ = 9 cm. Then what is the value (in cm) of OS ?

A. 6
B. 5
C. 4
D. 3
Answer: Option D
Solution (By Examveda Team)

In the given circle,
SX is a tangent
SX2 = (XQ) × (PX)
SX2 = 3 × [PQ+ QX]
SX2 = 3 × [3 + 9]
SX2 = 3 × 12
SX2 = 36
SX = 6 cm
RO = 6 = OX = SX
∴ OQ = OX - QX and
PO = PQ - OQ
OQ = 6 - 3 = 3 cm and
PO = 9 - 3 = 6 cm
PQ and RS Intersects at O,
∴ PO × OQ = RO × OS
⇒ 6 × 3 = 6 × OS
⇒ OS = 3 cm
Related Questions on Geometry
A. $$\frac{{23\sqrt {21} }}{4}$$
B. $$\frac{{15\sqrt {21} }}{4}$$
C. $$\frac{{17\sqrt {21} }}{5}$$
D. $$\frac{{23\sqrt {21} }}{5}$$
In the given figure, ∠ONY = 50° and ∠OMY = 15°. Then the value of the ∠MON is

A. 30°
B. 40°
C. 20°
D. 70°


Join The Discussion