Answer & Solution
Answer: Option C
Solution:
$$\eqalign{
& 2x + 3y = 11{\text{ }}{\text{. }}{\text{. }}{\text{. }}{\text{. }}{\text{. }}{\text{. }}\left( {\text{i}} \right) \cr
& x - 2y = - 12{\text{ }}{\text{. }}{\text{. }}{\text{. }}{\text{. }}{\text{. }}{\text{. }}{\left( {{\text{ii}}} \right)_{ \times 2}} \cr
& \,2x - 4y = - 24 \cr
& \underline {\,2x + 3y = 11\,} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,7y = 35 \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,y = 5 \cr
& {\text{From equation}}\left( {\text{i}} \right) \cr
& 2x + 15 = 11 \cr
& x = - 2 \cr
& \left( {{x_1},\,{y_1}} \right) = \left( { - 2,\,5} \right) \cr
& {\text{At }}x{\text{ - axis}},\,y = 0 \cr
& x - 2 \times 0 = - 12 \cr
& x = - 12 \cr
& \left( {{x_2},\,{y_2}} \right) = \left( { - 12,\,0} \right) \cr
& {x_1} - {x_2} + {y_1} + {y_2} = - 2 + 12 + 5 + 0 = 15 \cr} $$