41.
Identify the correct Bellmann Ford Algorithm.

for i=1 to V[g]-1
	do for each edge (u,v) in E[g]
		do Relax(u,v,w)
   for each edge (u,v) in E[g]
	do if d[v]>d[u]+w(u,v)
		then return False
   return True

for i=1 to V[g]-1
       for each edge (u,v) in E[g]
	do if d[v]>d[u]+w(u,v)
		then return False
    return True

for i=1 to V[g]-1
	do for each edge (u,v) in E[g]
		do Relax(u,v,w)
   for each edge (u,v) in E[g]
	do if d[v]<d[u]+w(u,v)
		then return true
   return True

for i=1 to V[g]-1
	do for each edge (u,v) in E[g]
		do Relax(u,v,w)
   return True

44.
Consider the graph shown below.
Graph Algorithms (DFS, BFS, Dijkstras, etc) mcq question image
Which of the following edges form the MST of the given graph using Prim'a algorithm, starting from vertex 4.

45.
Consider the following statements.
S1. Kruskal's algorithm might produce a non-minimal spanning tree.
S2. Kruskal's algorithm can efficiently implemented using the disjoint-set data structure.

Read More Section(Graph Algorithms (DFS, BFS, Dijkstras, etc))

Each Section contains maximum 100 MCQs question on Graph Algorithms (DFS, BFS, Dijkstras, etc). To get more questions visit other sections.