31. How many edges does a n vertex triangle free graph contains?
32. The worst-case efficiency of solving a problem in polynomial time is?
33. What is the output of the following code?
#include<stdio.h>
int max_of_two(int a, int b)
{
if(a > b)
return a;
return b;
}
int min_of_two(int a, int b)
{
if(a < b)
return a;
return b;
}
int recursive_max_element(int *arr, int len, int idx)
{
if(idx == len - 1)
return arr[idx];
return max_of_two(arr[idx], recursive_max_element(arr, len, idx + 1));
}
int recursive_min_element(int *arr, int len, int idx)
{
if(idx == len - 1)
return arr[idx];
return min_of_two(arr[idx], recursive_min_element(arr, len, idx + 1));
}
int main()
{
int n = 10, idx = 0, arr[] = {5,2,6,7,8,9,3,-1,1,10};
int max_element = recursive_max_element(arr,n,idx);
int min_element = recursive_min_element(arr,n,idx);
printf("%d %d",max_element,min_element);
return 0;
}
#include<stdio.h>
int max_of_two(int a, int b)
{
if(a > b)
return a;
return b;
}
int min_of_two(int a, int b)
{
if(a < b)
return a;
return b;
}
int recursive_max_element(int *arr, int len, int idx)
{
if(idx == len - 1)
return arr[idx];
return max_of_two(arr[idx], recursive_max_element(arr, len, idx + 1));
}
int recursive_min_element(int *arr, int len, int idx)
{
if(idx == len - 1)
return arr[idx];
return min_of_two(arr[idx], recursive_min_element(arr, len, idx + 1));
}
int main()
{
int n = 10, idx = 0, arr[] = {5,2,6,7,8,9,3,-1,1,10};
int max_element = recursive_max_element(arr,n,idx);
int min_element = recursive_min_element(arr,n,idx);
printf("%d %d",max_element,min_element);
return 0;
}
34. What is the output of the following code?
#include<stdio.h>
int max_of_two(int a, int b)
{
if(a > b)
return a;
return b;
}
int min_of_two(int a, int b)
{
if(a < b)
return a;
return b;
}
int recursive_max_element(int *arr, int len, int idx)
{
if(idx == len - 1)
return arr[idx];
return max_of_two(arr[idx], recursive_max_element(arr, len, idx + 1));
}
int recursive_min_element(int *arr, int len, int idx)
{
if(idx == len - 1)
return arr[idx];
return min_of_two(arr[idx], recursive_min_element(arr, len, idx + 1));
}
int main()
{
int n = 5, idx = 0, arr[] = {1,1,1,1,1};
int max_element = recursive_max_element(arr,n,idx);
int min_element = recursive_min_element(arr,n,idx);
printf("%d %d",max_element,min_element);
return 0;
}
#include<stdio.h>
int max_of_two(int a, int b)
{
if(a > b)
return a;
return b;
}
int min_of_two(int a, int b)
{
if(a < b)
return a;
return b;
}
int recursive_max_element(int *arr, int len, int idx)
{
if(idx == len - 1)
return arr[idx];
return max_of_two(arr[idx], recursive_max_element(arr, len, idx + 1));
}
int recursive_min_element(int *arr, int len, int idx)
{
if(idx == len - 1)
return arr[idx];
return min_of_two(arr[idx], recursive_min_element(arr, len, idx + 1));
}
int main()
{
int n = 5, idx = 0, arr[] = {1,1,1,1,1};
int max_element = recursive_max_element(arr,n,idx);
int min_element = recursive_min_element(arr,n,idx);
printf("%d %d",max_element,min_element);
return 0;
}
35. What is the output of the following code?
#include<stdio.h>
int recursive_search_num(int *arr, int num, int idx, int len)
{
if(idx == len)
return -1;
if(arr[idx] == num)
return idx;
return recursive_search_num(arr, num, idx+1, len);
}
int main()
{
int arr[8] ={-11,2,-3,0,3,5,-6,7},num = -2,len = 8;
int indx = recursive_search_num(arr,num,0,len);
printf("Index of %d is %d",num,indx);
return 0;
}
#include<stdio.h>
int recursive_search_num(int *arr, int num, int idx, int len)
{
if(idx == len)
return -1;
if(arr[idx] == num)
return idx;
return recursive_search_num(arr, num, idx+1, len);
}
int main()
{
int arr[8] ={-11,2,-3,0,3,5,-6,7},num = -2,len = 8;
int indx = recursive_search_num(arr,num,0,len);
printf("Index of %d is %d",num,indx);
return 0;
}
36. What will be the output of the code that generates permutations and also has the ability to handle duplicates, for the input str[]="AA"?
37. What will be the chromatic index for a complete graph having n vertices (consider n to be an odd number)?
38. Who invented Euclid's algorithm?
39. Gronsfeld cipher is a variation of . . . . . . . .
40. The no. of partitions of which of the following integer will be divisible by 5?
Read More Section(Miscellaneous on Data Structures)
Each Section contains maximum 100 MCQs question on Miscellaneous on Data Structures. To get more questions visit other sections.
- Miscellaneous on Data Structures - Section 1
- Miscellaneous on Data Structures - Section 2
- Miscellaneous on Data Structures - Section 3
- Miscellaneous on Data Structures - Section 4
- Miscellaneous on Data Structures - Section 6
- Miscellaneous on Data Structures - Section 7
- Miscellaneous on Data Structures - Section 8
- Miscellaneous on Data Structures - Section 9
- Miscellaneous on Data Structures - Section 10
- Miscellaneous on Data Structures - Section 11
- Miscellaneous on Data Structures - Section 12