12.
Which one of the following describes the relationship among the three vectors, \[{\rm{\hat i}} + {\rm{\hat j}} + {\rm{\hat k}},\,2{\rm{\hat i}} + 3{\rm{\hat j}} + {\rm{\hat k}}\]     and \[{\rm{5\hat i}} + 6{\rm{\hat j}} + 4{\rm{\hat k}}\,{\rm{?}}\]

13.
Let the function
\[{\text{f}}\left( \theta \right) = \left| {\begin{array}{*{20}{c}} {\sin \theta }&{\cos \theta }&{\tan \theta } \\ {\sin \left( {\frac{\pi }{6}} \right)}&{\cos \left( {\frac{\pi }{6}} \right)}&{\tan \left( {\frac{\pi }{6}} \right)} \\ {\sin \left( {\frac{\pi }{3}} \right)}&{\cos \left( {\frac{\pi }{3}} \right)}&{\tan \left( {\frac{\pi }{3}} \right)} \end{array}} \right|\]
where \[\theta \in \left[ {\frac{\pi }{6},\,\frac{\pi }{3}} \right]\]   and \[{\text{f'}}\left( \theta \right)\]  denote the derivative of f with respect to \[\theta \]. Which of the following statements is/are TRUE?
I. There exists \[\theta \in \left( {\frac{\pi }{6},\,\frac{\pi }{3}} \right)\]   such that \[{\text{f'}}\left( \theta \right) = 0.\]
II. There exists \[\theta \in \left( {\frac{\pi }{6},\,\frac{\pi }{3}} \right)\]   such that \[{\text{f'}}\left( \theta \right) \ne 0\]

14.
The value of the integral \[\int\limits_0^2 {\int\limits_0^{\text{x}} {{{\text{e}}^{{\text{x}} + {\text{y}}}}} } {\text{dy dx}}\]

15.
For the scalar field \[{\text{u}} = \frac{{{{\text{x}}^2}}}{2} + \frac{{{{\text{y}}^2}}}{3},\]   magnitude of the gradient at the point (1, 3) is

16.
A series expansion for the function sin θ is

17.
Directional derivative of \[\phi \] = 2xz - y2 at the point (1, 3, 2) becomes maximum in the direction of:

20.
The local minima of function f(x) = x2 - x4 in the range -0.8 ≤ x ≤ 0.8 is located at

Read More Section(Calculus)

Each Section contains maximum 100 MCQs question on Calculus. To get more questions visit other sections.