21.
The value of the integral \[\int\limits_0^2 {\frac{{{{\left( {{\text{x}} - 1} \right)}^2}\sin \left( {{\text{x}} - 1} \right)}}{{{{\left( {{\text{x}} - 1} \right)}^2} + \cos \left( {{\text{x}} - 1} \right)}}} {\text{dx}}\]      is

22.
Stokes theorem connects

23.
Which of the following integrals is unbounded?

24.
Changing the order of the integration in the double integral \[{\text{I}} = \int\limits_0^8 {\int\limits_{\frac{{\text{x}}}{4}}^2 {{\text{f}}\left( {{\text{x,}}\,{\text{y}}} \right){\text{dydx}}} } \]     leads to \[{\text{I}} = \int\limits_{\text{r}}^{\text{s}} {\int\limits_{\text{p}}^{\text{q}} {{\text{f}}\left( {{\text{x,}}\,{\text{y}}} \right){\text{dx dy}}} .} \]     What is q?

25.
The divergence of the vector field \[\overrightarrow {\rm{A}} = {\rm{x}}{{{\rm{\hat a}}}_{\rm{x}}} + {\rm{y}}{{{\rm{\hat a}}}_{\rm{y}}} + {\rm{z}}{{{\rm{\hat a}}}_{\rm{z}}}\]    is

27.
The angle (in degree) between two planes vectors \[\overrightarrow {\rm{a}} = \frac{{\sqrt 3 }}{2}{\rm{\hat i}} + \frac{1}{2}{\rm{\hat j}}\]    and \[\overrightarrow {\rm{b}} = \frac{{ - \sqrt 3 }}{2}{\rm{\hat i}} + \frac{1}{2}{\rm{\hat j}}\]    is

30.
\[\mathop {\lim }\limits_{{\text{x}} \to 0} \frac{{{{\log }_{\text{e}}}\left( {1 + 4{\text{x}}} \right)}}{{{{\text{e}}^{3{\text{x}}}} - 1}}\]   is equal to

Read More Section(Calculus)

Each Section contains maximum 100 MCQs question on Calculus. To get more questions visit other sections.