21.
The value of the definite integral $$\int_1^{\text{e}} {\sqrt {\text{x}} } \ln \left( {\text{x}} \right){\text{dx}}$$    is

22.
In the Taylor series expansion of ex about x = 2, the coefficient of (x - 2)4 is

24.
The value of the line integral $$\int\limits_{\text{c}} {\left( {2{\text{x}}{{\text{y}}^2}{\text{dx}} + 2{{\text{x}}^2}{\text{ydy}} + {\text{dz}}} \right)} $$     along a path joining the origin (0, 0, 0) and the point (1, 1, 1) is

25.
Consider a vector field $$\overrightarrow {\text{A}} \left( {\overrightarrow {\text{r}} } \right).$$  The closed loop line integral $$\oint {\overrightarrow {\text{A}} \cdot \overrightarrow {{\text{d}}l} } $$  can be expressed as

28.
For a position vector \[{\rm{r}} = {\rm{x\hat i}} + {\rm{y\hat j}} + {\rm{z\hat k}}\]    the norm of the vector can be defined as $$\left| {\overrightarrow {\text{r}} } \right| = \sqrt {{{\text{x}}^2} + {{\text{y}}^2} + {{\text{z}}^2}} .$$     Given a function $$\phi = \ln \left| {\overrightarrow {\text{r}} } \right|,$$   its gradient $$\nabla \phi $$  is

29.
According to the Mean Value Theorem, for a continuous function f(x) in the interval [a, b], there exists a value $$\xi $$ in this interval such that $$\int\limits_{\text{a}}^{\text{b}} {{\text{f}}\left( {\text{x}} \right){\text{dx}} = } $$

30.
Let $$\nabla \cdot \left( {{\text{f}}\overrightarrow {\text{v}} } \right) = {{\text{x}}^2}{\text{y}} + {{\text{y}}^2}{\text{z}} + {{\text{z}}^2}{\text{x}},$$      where f and v are scalar and vector fields respectively. If $$\overrightarrow {\text{v}} = {\text{y}}\overrightarrow {\text{i}} + {\text{z}}\overrightarrow {\text{j}} + {\text{x}}\overrightarrow {\text{k}} ,$$     then $$\overrightarrow {\text{v}} \cdot \nabla {\text{f}}$$   is

Read More Section(Calculus)

Each Section contains maximum 100 MCQs question on Calculus. To get more questions visit other sections.