21. The value of the definite integral $$\int_1^{\text{e}} {\sqrt {\text{x}} } \ln \left( {\text{x}} \right){\text{dx}}$$    is
						
					22. In the Taylor series expansion of ex about x = 2, the coefficient of (x - 2)4 is
						
					23. The value of the integral $$\int_0^\pi  {{\text{x}}{{\cos }^2}{\text{xdx}}} $$   is
						
					24. The value of the line integral $$\int\limits_{\text{c}} {\left( {2{\text{x}}{{\text{y}}^2}{\text{dx}} + 2{{\text{x}}^2}{\text{ydy}} + {\text{dz}}} \right)} $$     along a path joining the origin (0, 0, 0) and the point (1, 1, 1) is
						
					25. Consider a vector field $$\overrightarrow {\text{A}} \left( {\overrightarrow {\text{r}} } \right).$$  The closed loop line integral $$\oint {\overrightarrow {\text{A}}  \cdot \overrightarrow {{\text{d}}l} } $$  can be expressed as
						
					26. The area between the parabolas y2 = 4ax and x2 = 4ay is
						
					27. $$\mathop {\lim }\limits_{{\text{x}} \to \infty } {{\text{x}}^{\frac{1}{{\text{x}}}}}$$  is
						
					28. For a position vector \[{\rm{r}} = {\rm{x\hat i}} + {\rm{y\hat j}} + {\rm{z\hat k}}\]    the norm of the vector can be defined as $$\left| {\overrightarrow {\text{r}} } \right| = \sqrt {{{\text{x}}^2} + {{\text{y}}^2} + {{\text{z}}^2}} .$$     Given a function $$\phi  = \ln \left| {\overrightarrow {\text{r}} } \right|,$$   its gradient $$\nabla \phi $$  is
						
					29. According to the Mean Value Theorem, for a continuous function f(x) in the interval [a, b], there exists a value $$\xi $$ in this interval such that $$\int\limits_{\text{a}}^{\text{b}} {{\text{f}}\left( {\text{x}} \right){\text{dx}} = } $$
						
					30. Let $$\nabla  \cdot \left( {{\text{f}}\overrightarrow {\text{v}} } \right) = {{\text{x}}^2}{\text{y}} + {{\text{y}}^2}{\text{z}} + {{\text{z}}^2}{\text{x}},$$      where f and v are scalar and vector fields respectively. If $$\overrightarrow {\text{v}}  = {\text{y}}\overrightarrow {\text{i}}  + {\text{z}}\overrightarrow {\text{j}}  + {\text{x}}\overrightarrow {\text{k}} ,$$     then $$\overrightarrow {\text{v}}  \cdot \nabla {\text{f}}$$   is
						
					Read More Section(Calculus)
Each Section contains maximum 100 MCQs question on Calculus. To get more questions visit other sections.
