31.
Let $${\text{f}}\left( {{\text{x, y}}} \right) = \frac{{{\text{a}}{{\text{x}}^2} + {\text{b}}{{\text{y}}^2}}}{{{\text{xy}}}},$$     where a and b are constants. If $$\frac{{\partial {\text{f}}}}{{\partial {\text{x}}}} = \frac{{\partial {\text{f}}}}{{\partial {\text{y}}}}$$   at x = 1 and y = 2, then the relation between a and b is

33.
If f(x) is an even function and a is a positive real number, then $$\int_{ - {\text{a}}}^{\text{a}} {{\text{f}}\left( {\text{x}} \right){\text{dx}}} $$   equals

34.
Curl of vector \[\overrightarrow {\rm{F}} = {{\rm{x}}^2}{{\rm{z}}^2}{\rm{\hat i}} - 2{\rm{x}}{{\rm{y}}^2}{\rm{z\hat j}} + 2{{\rm{y}}^2}{{\rm{z}}^3}{\rm{\hat k}}\]      is

35.
The directional derivative of the scalar function f(x, y, z) = x2 + 2y2 + z at the point P = (1, 1, 2) in the direction of the vector \[\overrightarrow {\rm{a}} = 3{\rm{\hat i}} - 4{\rm{\hat j}}\]   is

37.
The value of $$\mathop {\lim }\limits_{\left( {{\text{x,}}\,{\text{y}}} \right) \to \left( {0,\,0} \right)} \frac{{{{\text{x}}^2} - {\text{xy}}}}{{\sqrt {\text{x}} - \sqrt {\text{y}} }}$$    is

40.
Equation of the line normal to function $${\text{f}}\left( {\text{x}} \right) = {\left( {{\text{x}} - 8} \right)^{\frac{2}{3}}} + 1$$    at P(0, 5) is

Read More Section(Calculus)

Each Section contains maximum 100 MCQs question on Calculus. To get more questions visit other sections.