32.
The solution for the differential equation $$\frac{{{\text{dy}}}}{{{\text{dx}}}} = {{\text{x}}^2}{\text{y}}$$   with the condition that y = 1 at x = 0 is

34.
The solution of the differential equation $$\frac{{{\text{dy}}}}{{{\text{dx}}}} + {{\text{y}}^2} = 0$$   is

36.
Match List-I with List-II and select the correct answer:
      List-I         List-II
A. $$\frac{{{\text{dy}}}}{{{\text{dx}}}} = \frac{{\text{y}}}{{\text{x}}}$$ 1. Circles
B. $$\frac{{{\text{dy}}}}{{{\text{dx}}}} = - \frac{{\text{y}}}{{\text{x}}}$$ 2. Straight lines
C. $$\frac{{{\text{dy}}}}{{{\text{dx}}}} = \frac{{\text{x}}}{{\text{y}}}$$ 3. Hyperbolas
D. $$\frac{{{\text{dy}}}}{{{\text{dx}}}} = - \frac{{\text{x}}}{{\text{y}}}$$

37.
If a and b are constants, the most general solution of the differential equation $$\frac{{{{\text{d}}^2}{\text{x}}}}{{{\text{d}}{{\text{t}}^2}}} + 2\frac{{{\text{dx}}}}{{{\text{dt}}}} + {\text{x}} = 0$$    is

38.
The solution of the differential equation, for t > 0, y''(t) + 2y'(t) + y(t) = 0 with initial conditions y(0) = 0 and y'(0) = 1, is (u(t) denotes the unit step function),

39.
A differential equation is given as
$${{\text{x}}^2}\frac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}} - 2{\text{x}}\frac{{{\text{dy}}}}{{{\text{dx}}}} + 2{\text{y}} = 4$$
The solution of differential equation in terms of arbitrary constant C1 and C2 is

40.
The solution of the differential equation $$\frac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}} = 0$$   with boundary conditions
$${\text{i}}{\text{.}}\,\frac{{{\text{dy}}}}{{{\text{dx}}}} = 1{\text{ at x}} = 0;\,{\text{ii}}{\text{.}}\,\frac{{{\text{dy}}}}{{{\text{dx}}}} = 1{\text{ at x}} = 1{\text{ is}}$$