42.
Multiplication of matrices E and F is G. Matrices E and G are \[{\text{E}} \equiv \left[ {\begin{array}{*{20}{c}} {\cos \theta }&{ - \sin \theta }&0 \\ {\sin \theta }&{\cos \theta }&0 \\ 0&0&1 \end{array}} \right]{\text{and G}} \equiv \left[ {\begin{array}{*{20}{c}} 1&0&0 \\ 0&1&0 \\ 0&0&1 \end{array}} \right].\]
What is the matrix F?

43.
If a matrix \[{\text{A}} = \left[ {\begin{array}{*{20}{c}} 2&4 \\ 1&3 \end{array}} \right]\]  and matrix \[{\text{B}} = \left[ {\begin{array}{*{20}{c}} 4&6 \\ 5&9 \end{array}} \right]\]  the transpose of product of these two matrices i.e., (AB)T is

44.
Consider the following 2 × 2 matrix A where two elements are unknown and are marked by a and b. The eigen values of this matrix are -1 and 7. What are the values of a and b?
\[{\text{A}} = \left( {\begin{array}{*{20}{c}} 1&4 \\ {\text{b}}&{\text{a}} \end{array}} \right)\]

45.
Consider the following system of equations in three real variables x1, x2 and x3
2x1 - x2 + 3x3 = 1
3x1 - 2x2 + 5x3 = 2
-x1 - 4x2 + x3 = 3
This system of equations has

50.
Given an orthogonal matrix \[{\text{A}} = \left[ {\begin{array}{*{20}{c}} 1&1&1&1 \\ 1&1&{ - 1}&{ - 1} \\ 1&{ - 1}&0&0 \\ 0&0&1&{ - 1} \end{array}} \right],\,{\left[ {{\text{A}}{{\text{A}}^{\text{T}}}} \right]^{ - 1}}\,{\text{is}}\]

Read More Section(Linear Algebra)

Each Section contains maximum 100 MCQs question on Linear Algebra. To get more questions visit other sections.