$$\frac{1}{{1 + {x^{\left( {b - a} \right)}} + {x^{\left( {c - a} \right)}}}}$$ $$ + \frac{1}{{1 + {x^{\left( {a - b} \right)}} + {x^{\left( {c - b} \right)}}}}$$ $$ + \frac{1}{{1 + {x^{\left( {b - c} \right)}} + {x^{\left( {a - c} \right)}}}} = ?$$
A. 0
B. 1
C. xa - b - c
D. None of these
Answer: Option B
Solution (By Examveda Team)
Given exp. =$$ = \frac{1}{{\left( {1 + \frac{{{x^b}}}{{{x^a}}} + \frac{{{x^c}}}{{{x^a}}}} \right)}} + $$ $$\frac{1}{{\left( {1 + \frac{{{x^a}}}{{{x^b}}} + \frac{{{x^c}}}{{{x^b}}}} \right)}} + $$ $$\frac{1}{{\left( {1 + \frac{{{x^b}}}{{{x^c}}} + \frac{{{x^a}}}{{{x^c}}}} \right)}}$$
$$ = \frac{{{x^a}}}{{\left( {{x^a} + {x^b} + {x^c}} \right)}} + $$ $$\frac{{{x^b}}}{{\left( {{x^a} + {x^b} + {x^c}} \right)}} + $$ $$\frac{{{x^c}}}{{\left( {{x^a} + {x^b} + {x^c}} \right)}}$$
$$\eqalign{ & = \frac{{ {{x^a} + {x^b} + {x^c}} }}{{ {{x^a} + {x^b} + {x^c}} }} \cr & = 1 \cr} $$
Join The Discussion