Examveda

1m3 of an ideal gas at 500 K and 1000 kPa expands reversibly to 5 times its initial volume in an insulated container. If the specific heat capacity (at constant pressure) of the gas is 21 J/mole.K, the final temperature will be

A. 35 K

B. 174 K

C. 274 K

D. 154 K

Answer: Option B

Solution (By Examveda Team)

Insulated cylinder $$ \Rightarrow $$   adiabatic system
$$\eqalign{ & \Rightarrow P{V^\gamma } = {\text{CONSTANT}} \cr & \Rightarrow T{V^{\gamma - 1}} = {\text{CONSTANT}} \cr & \Rightarrow \frac{{{T_1}}}{{{T_2}}} = \frac{{{V_2}^{\gamma - 1}}}{{{V_1}}} \cr & \Rightarrow \frac{{500}}{{{T_2}}} = {\left( 5 \right)^{\gamma - 1}} \cr & {C_P} - {C_V} = R\left( {{\text{For ideal gas}}} \right) \cr & \Rightarrow \gamma = 1.65 \cr & {\text{So, }}{T_2} = 176.05\,K \cr} $$

Join The Discussion

Comments (1)

  1. Atanu Chatterjee
    Atanu Chatterjee:
    4 months ago

    1m3 of an ideal gas at 500 K and 1000 kPa expands reversibly to 5 times its initial volume in an insulated container. If the specific heat capacity (at constant pressure) of the gas is 21 J/mole.K, the final temperature will be

    A. 35 K

    B. 174 K

    C. 274 K

    D. 154 K

    We are given
    Initial volume
    V
    1
    =
    1

    m
    3
    V
    1

    =1m
    3


    Final volume
    V
    2
    =
    5

    m
    3
    V
    2

    =5m
    3


    Initial temperature
    T
    1
    =
    500

    K
    T
    1

    =500K

    Pressure
    P
    1
    =
    1000

    kPa
    P
    1

    =1000kPa

    Process: reversible and adiabatic expansion (since it's an insulated container)

    Specific heat at constant pressure:
    C
    p
    =
    21

    J/mol
    cdotp
    K
    C
    p

    =21J/molcdotpK

    Step 1: Use the adiabatic relation for ideal gases:
    For a reversible adiabatic process:

    T
    2
    =
    T
    1
    (
    V
    1
    V
    2
    )
    γ

    1
    T
    2

    =T
    1

    (
    V
    2


    V
    1



    )
    γ−1

    We need to find
    γ
    γ, the heat capacity ratio:

    γ
    =
    C
    p
    C
    v
    ,
    and
    C
    v
    =
    C
    p

    R
    γ=
    C
    v


    C
    p



    ,andC
    v

    =C
    p

    −R
    For an ideal gas,
    R
    =
    8.314

    J/mol
    cdotp
    K
    R=8.314J/molcdotpK, so:

    C
    v
    =
    21

    8.314
    =
    12.686

    J/mol
    cdotp
    K
    C
    v

    =21−8.314=12.686J/molcdotpK
    γ
    =
    21
    12.686

    1.655
    γ=
    12.686
    21

    ≈1.655
    Step 2: Apply the temperature-volume relation:
    T
    2
    =
    500
    (
    1
    5
    )
    1.655

    1
    =
    500

    5

    0.655
    T
    2

    =500(
    5
    1

    )
    1.655−1
    =500⋅5
    −0.655

    Now calculate
    5

    0.655
    5
    −0.655
    :

    log

    10
    (
    5
    )

    0.6990


    0.655

    log

    10
    (
    5
    )


    0.458
    log
    10

    (5)≈0.6990⇒−0.655⋅log
    10

    (5)≈−0.458
    10

    0.458

    0.349
    10
    −0.458
    ≈0.349
    So,

    T
    2

    500

    0.349
    =
    174.5

    K
    T
    2

    ≈500⋅0.349=174.5K
    ✅ Final Answer is C

Related Questions on Chemical Engineering Thermodynamics