Solution (By Examveda Team)
$$\eqalign{
& {\text{Given}}\,{\text{Expression}} \cr
& = \frac{{{{\left( {243} \right)}^{n/5}} \times {3^{2n + 1}}}}{{{9^n} \times {3^{n - 1}}}} \cr
& = \frac{{{{\left( {{3^5}} \right)}^{n/5}} \times {3^{2n + 1}}}}{{{{\left( {{3^2}} \right)}^n} \times {3^{n - 1}}}} \cr
& = \frac{{\left( {{3^{5 \times \left( {n/5} \right)}} \times {3^{2n + 1}}} \right)}}{{\left( {{3^{2n}} \times {3^{n - 1}}} \right)}} \cr
& = \frac{{{3^n} \times {3^{2n + 1}}}}{{{3^{2n}} \times {3^{n - 1}}}} \cr
& = \frac{{{3^{\left( {n + 2n + 1} \right)}}}}{{{3^{\left( {2n + n - 1} \right)}}}} \cr
& = \frac{{{3^{3n + 1}}}}{{{3^{3n - 1}}}} \cr
& = {3^{\left( {3n + 1 - 3n + 1} \right)}} \cr
& = {3^2} \cr
& = 9 \cr} $$
Join The Discussion