A 3 × 3 matrix has elements such that its trace is 11 and its determinant is 36. The eigen values of the matrix are all known to be positive integers. The largest eigen value of the matrix is
A. 18
B. 12
C. 9
D. 6
Answer: Option C
A. $$\frac{{1 + i}}{{\sqrt 2 }}a{\text{ and}} - \frac{{1 + i}}{{\sqrt 2 }}a$$
B. $$ia{\text{ and }} - ia$$
C. $$ia,\, - ia,\,\frac{{1 - i}}{{\sqrt 2 }}a{\text{ and}} - \frac{{1 - i}}{{\sqrt 2 }}a$$
D. $$\frac{{1 + i}}{{\sqrt 2 }}a,\, - \frac{{1 + i}}{{\sqrt 2 }}a,\,\frac{{1 - i}}{{\sqrt 2 }}a{\text{ and}} - \frac{{1 - i}}{{\sqrt 2 }}a$$
Which of the following functions of the complex variable z is not analytic everywhere?
A. ez
B. $$\sin \frac{{\text{z}}}{{\text{z}}}$$
C. e3
D. |z|3
A. \[\left( {1 - \sqrt 3 } \right){{{\bf{\hat i}}}^{\bf{'}}} + 3{{{\bf{\hat j}}}^{\bf{'}}} + \left( {1 + \sqrt 3 } \right){{{\bf{\hat k}}}^{\bf{'}}}\]
B. \[\left( {1 + \sqrt 3 } \right){{{\bf{\hat i}}}^{\bf{'}}} + 3{{{\bf{\hat j}}}^{\bf{'}}} + \left( {1 - \sqrt 3 } \right){{{\bf{\hat k}}}^{\bf{'}}}\]
C. \[\left( {1 - \sqrt 3 } \right){{{\bf{\hat i}}}^{\bf{'}}} + \left( {3 + \sqrt 3 } \right){{{\bf{\hat j}}}^{\bf{'}}} + 2{{{\bf{\hat k}}}^{\bf{'}}}\]
D. \[\left( {1 - \sqrt 3 } \right){{{\bf{\hat i}}}^{\bf{'}}} + \left( {3 - \sqrt 3 } \right){{{\bf{\hat j}}}^{\bf{'}}} + 2{{{\bf{\hat k}}}^{\bf{'}}}\]


Join The Discussion