Examveda
Examveda

A block of mass m1, placed on an inclined smooth plane is connected by a light string passing over a smooth pulley to mass m2, which moves vertically downwards as shown in the below figure. The tension in the string is
Engineering Mechanics mcq question image

A. $$\frac{{{{\text{m}}_1}}}{{{{\text{m}}_2}}}$$

B. $${{\text{m}}_1}{\text{g}}\sin \alpha $$

C. $$\frac{{{{\text{m}}_1}{{\text{m}}_2}}}{{{{\text{m}}_1} + {{\text{m}}_2}}}$$

D. $$\frac{{{{\text{m}}_1}{{\text{m}}_2}{\text{g}}\left( {1 + \sin \alpha } \right)}}{{{{\text{m}}_1} + {{\text{m}}_2}}}$$

Answer: Option D


This Question Belongs to Mechanical Engineering >> Engineering Mechanics

Join The Discussion

Comments ( 4 )

  1. Aman Shukla
    Aman Shukla :
    3 years ago

    For coplanar cuncurrent and non concurrent force system, their are 3 equilibrium equation
    1- algebraic sum of all horizontal force =0,
    2- algebraic sum of all vertical force =0,
    3- algebraic sum of all moment about any point = 0 ,
    So, in this question all are correct, option (d) is correct

  2. Arnab Datta
    Arnab Datta :
    3 years ago

    First find the accelaration
    a = accelaration
    T - m1.g.sinα = m1.a
    =>T = m1(g.sinα+a)----(1)
    m2.g-T=m2.a
    =>T=(m2.g - m2.a)-----(2)
    add the equation (1) and (2)
    m1(g.sinα+a) = (m2.g - m)
    => a =(m2.g - m1g.sinα)/(m1 + m2 )
    from the equation 1
    T = m1(g.sinα+a)
    T = m1(g.sinα+(m2.g - m1g.sinα)/(m1 + m2 ))
    T = (m1.m2.g+m2.m2.g-m2.m2.g+m1.m2.g.
    sinα)/(m1 + m2 )
    T= m₁. m₂.g (1 + sin α)/(m₁ + m₂)

  3. Akarsh Balachandran
    Akarsh Balachandran :
    3 years ago

    consider b = alpha

    T - m1gsinb = m1*a -- Equation 1
    m2g - T = m2*a -- Equation 2

    Add the equations, you'll get -
    m2g - m1gsinb = (m1 + m2)*a

    Find a and then substitute it in equation 1 or 2. You'll get T as option D.

  4. SUMAN HALDER
    SUMAN HALDER :
    4 years ago

    Pls explain the ansr.

Related Questions on Engineering Mechanics

If a number of forces are acting at a point, their resultant is given by

A. $${\left( {\sum {\text{V}} } \right)^2} + {\left( {\sum {\text{H}} } \right)^2}$$

B. $$\sqrt {{{\left( {\sum {\text{V}} } \right)}^2} + {{\left( {\sum {\text{H}} } \right)}^2}} $$

C. $${\left( {\sum {\text{V}} } \right)^2} + {\left( {\sum {\text{H}} } \right)^2} + 2\left( {\sum {\text{V}} } \right)\left( {\sum {\text{H}} } \right)$$

D. $$\sqrt {{{\left( {\sum {\text{V}} } \right)}^2} + {{\left( {\sum {\text{H}} } \right)}^2} + 2\left( {\sum {\text{V}} } \right)\left( {\sum {\text{H}} } \right)} $$