A conducting loop L of surface area S is moving with a velocity $$\overrightarrow {\bf{v}} $$ in a magnetic field $$\overrightarrow {\bf{B}} \left( {\overrightarrow {\bf{r}} ,\,t} \right) = {B_0}{t^2},\,{B_0}$$ is a positive constant of suitable dimensions. The emf induced Vemf in the loop is given by
A. $$ - \int\limits_S {\frac{{\partial \overrightarrow {\bf{B}} }}{{\partial t}}.d\overrightarrow {\bf{S}} } $$
B. $$\oint\limits_L {\left( {\overrightarrow {\bf{v}} \times \overrightarrow {\bf{B}} } \right).d\overrightarrow {\bf{L}} } $$
C. $$ - \int\limits_S {\frac{{\partial \overrightarrow {\bf{B}} }}{{\partial t}}.d\overrightarrow {\bf{S}} } - \oint\limits_L {\left( {\overrightarrow {\bf{v}} \times \overrightarrow {\bf{B}} } \right).d\overrightarrow {\bf{L}} } $$
D. $$ - \int\limits_S {\frac{{\partial \overrightarrow {\bf{B}} }}{{\partial t}}.d\overrightarrow {\bf{S}} } + \oint\limits_L {\left( {\overrightarrow {\bf{v}} \times \overrightarrow {\bf{B}} } \right).d\overrightarrow {\bf{L}} } $$
Answer: Option D
A. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} + y{\bf{\hat j}}} \right)$$
B. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} + {\bf{\hat J}}} \right)$$
C. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} - {\bf{\hat j}}} \right)$$
D. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} - y{\bf{\hat j}}} \right)$$
A. 0.033 μm
B. 0.330 μm
C. 3.300 μm
D. 33.000 μm
A. $${\bf{\hat z}}k$$
B. $${\bf{\hat x}}k\sin \alpha + {\bf{\hat y}}k\cos \alpha $$
C. $${\bf{\hat x}}k\cos \alpha + {\bf{\hat y}}k\cos \alpha $$
D. $$ - {\bf{\hat z}}k$$
A. vp = vg
B. vp = $${\text{v}}_{\text{g}}^{\frac{1}{2}}$$
C. vp vg = c2
D. vg = $${\text{v}}_{\text{p}}^{\frac{1}{2}}$$

Join The Discussion