A current $$l$$ flows in the anticlockwise direction through a square loop of side a lying in the XOY plane with its centre at the origin. The magnetic induction at the centre of the square loop is
A. $$\frac{{2\sqrt 2 \,{\mu _0}\,l}}{{\pi a}}{{\hat e}_x}$$
B. $$\frac{{2\sqrt 2 \,{\mu _0}\,l}}{{\pi a}}{{\hat e}_z}$$
C. $$\frac{{2\sqrt 2 \,{\mu _0}\,l}}{{\pi {a^2}}}{{\hat e}_z}$$
D. $$\frac{{2\sqrt 2 \,{\mu _0}\,l}}{{\pi {a^2}}}{{\hat e}_x}$$
Answer: Option B
A. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} + y{\bf{\hat j}}} \right)$$
B. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} + {\bf{\hat J}}} \right)$$
C. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} - {\bf{\hat j}}} \right)$$
D. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} - y{\bf{\hat j}}} \right)$$
A. 0.033 μm
B. 0.330 μm
C. 3.300 μm
D. 33.000 μm
A. $${\bf{\hat z}}k$$
B. $${\bf{\hat x}}k\sin \alpha + {\bf{\hat y}}k\cos \alpha $$
C. $${\bf{\hat x}}k\cos \alpha + {\bf{\hat y}}k\cos \alpha $$
D. $$ - {\bf{\hat z}}k$$
A. vp = vg
B. vp = $${\text{v}}_{\text{g}}^{\frac{1}{2}}$$
C. vp vg = c2
D. vg = $${\text{v}}_{\text{p}}^{\frac{1}{2}}$$
Join The Discussion