Examveda

A curve passes through the point (x = 1, y = 0) and satisfies the differential equation $$\frac{{{\text{dy}}}}{{{\text{dx}}}} = \frac{{{{\text{x}}^2} + {{\text{y}}^2}}}{{2{\text{y}}}} + \frac{{\text{y}}}{{\text{x}}}.$$    The equation that describes the curve is

A. $$\ln \left( {1 + \frac{{{{\text{y}}^2}}}{{{{\text{x}}^2}}}} \right) = {\text{x}} - 1$$

B. $$\frac{1}{2}\ln \left( {1 + \frac{{{{\text{y}}^2}}}{{{{\text{x}}^2}}}} \right) = {\text{x}} - 1$$

C. $$\ln \left( {1 + \frac{{\text{y}}}{{\text{x}}}} \right) = {\text{x}} - 1$$

D. $$\frac{1}{2}\ln \left( {1 + \frac{{\text{y}}}{{\text{x}}}} \right) = {\text{x}} - 1$$

Answer: Option A


This Question Belongs to Engineering Maths >> Differential Equations

Join The Discussion

Related Questions on Differential Equations

The general solution of the differential equation, $$\frac{{{{\text{d}}^4}{\text{y}}}}{{{\text{d}}{{\text{x}}^4}}} - 2\frac{{{{\text{d}}^3}{\text{y}}}}{{{\text{d}}{{\text{x}}^3}}} + 2\frac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}} - 2\frac{{{\text{dy}}}}{{{\text{dx}}}} + {\text{y}} = 0$$       is

A. $${\text{y}} = \left( {{{\text{C}}_1} - {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$

B. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} - {{\text{C}}_2}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$

C. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$

D. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} - {{\text{C}}_4}\sin {\text{x}}$$