A curve passes through the point (x = 1, y = 0) and satisfies the differential equation $$\frac{{{\text{dy}}}}{{{\text{dx}}}} = \frac{{{{\text{x}}^2} + {{\text{y}}^2}}}{{2{\text{y}}}} + \frac{{\text{y}}}{{\text{x}}}.$$ The equation that describes the curve is
A. $$\ln \left( {1 + \frac{{{{\text{y}}^2}}}{{{{\text{x}}^2}}}} \right) = {\text{x}} - 1$$
B. $$\frac{1}{2}\ln \left( {1 + \frac{{{{\text{y}}^2}}}{{{{\text{x}}^2}}}} \right) = {\text{x}} - 1$$
C. $$\ln \left( {1 + \frac{{\text{y}}}{{\text{x}}}} \right) = {\text{x}} - 1$$
D. $$\frac{1}{2}\ln \left( {1 + \frac{{\text{y}}}{{\text{x}}}} \right) = {\text{x}} - 1$$
Answer: Option A
A. $${\text{y}} = \left( {{{\text{C}}_1} - {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$
B. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} - {{\text{C}}_2}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$
C. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$
D. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} - {{\text{C}}_4}\sin {\text{x}}$$
A. $$\sqrt {1 - {{\text{x}}^2}} = {\text{c}}$$
B. $$\sqrt {1 - {{\text{y}}^2}} = {\text{c}}$$
C. $$\sqrt {1 - {{\text{x}}^2}} + \sqrt {1 - {{\text{y}}^2}} = {\text{c}}$$
D. $$\sqrt {1 + {{\text{x}}^2}} + \sqrt {1 + {{\text{y}}^2}} = {\text{c}}$$

Join The Discussion