A differential equation is given as
$${{\text{x}}^2}\frac{{{{\text{d}}^2}{\text{y}}}}{{{\text{d}}{{\text{x}}^2}}} - 2{\text{x}}\frac{{{\text{dy}}}}{{{\text{dx}}}} + 2{\text{y}} = 4$$
The solution of differential equation in terms of arbitrary constant C1 and C2 is
A. $${\text{y}} = \frac{{{{\text{C}}_1}}}{{{{\text{x}}^2}}} + {{\text{C}}_2}{\text{x}} + 2$$
B. $${\text{y}} = {{\text{C}}_1}{{\text{x}}^2} + {{\text{C}}_2}{\text{x}} + 4$$
C. $${\text{y}} = {{\text{C}}_1}{{\text{x}}^2} + {{\text{C}}_2}{\text{x}} + 2$$
D. $${\text{y}} = \frac{{{{\text{C}}_1}}}{{{{\text{x}}^2}}} + {{\text{C}}_2}{\text{x}} + 4$$
Answer: Option C
A. $${\text{y}} = \left( {{{\text{C}}_1} - {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$
B. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} - {{\text{C}}_2}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$
C. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} + {{\text{C}}_4}\sin {\text{x}}$$
D. $${\text{y}} = \left( {{{\text{C}}_1} + {{\text{C}}_2}{\text{x}}} \right){{\text{e}}^{\text{x}}} + {{\text{C}}_3}\cos {\text{x}} - {{\text{C}}_4}\sin {\text{x}}$$
A. $$\sqrt {1 - {{\text{x}}^2}} = {\text{c}}$$
B. $$\sqrt {1 - {{\text{y}}^2}} = {\text{c}}$$
C. $$\sqrt {1 - {{\text{x}}^2}} + \sqrt {1 - {{\text{y}}^2}} = {\text{c}}$$
D. $$\sqrt {1 + {{\text{x}}^2}} + \sqrt {1 + {{\text{y}}^2}} = {\text{c}}$$

Join The Discussion