Examveda
Examveda

A magnetic dipole of dipole moment $$\overrightarrow {\bf{m}} $$ is placed in a non-uniform magnetic field $$\overrightarrow {\bf{B}} .$$ If the position vector of the dipole is $$\overrightarrow {\bf{r}} ,$$ the torque acting on the dipole about the origin is

A. $$\overrightarrow {\bf{r}} \times \left( {\overrightarrow {\bf{m}} \times \overrightarrow {\bf{B}} } \right)$$

B. $$\overrightarrow {\bf{r}} \times \overrightarrow \nabla \left( {\overrightarrow {\bf{m}} .\overrightarrow {\bf{B}} } \right)$$

C. $$\overrightarrow {\bf{m}} \times \overrightarrow {\bf{B}} $$

D. $$\overrightarrow {\bf{m}} \times \overrightarrow {\bf{B}} + \overrightarrow {\bf{r}} \times \overrightarrow \nabla \left( {\overrightarrow {\bf{m}} .\overrightarrow {\bf{B}} } \right)$$

Answer: Option B


This Question Belongs to Engineering Physics >> Electromagnetic Theory

Join The Discussion

Related Questions on Electromagnetic Theory

Which one of the following current densities, $$\overrightarrow {\bf{J}} $$ can generate the magnetic vector potential $$\overrightarrow {\bf{A}} = \left( {{y^2}{\bf{\hat i}} + {x^2}{\bf{\hat j}}} \right)?$$

A. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} + y{\bf{\hat j}}} \right)$$

B. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} + {\bf{\hat J}}} \right)$$

C. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} - {\bf{\hat j}}} \right)$$

D. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} - y{\bf{\hat j}}} \right)$$