Examveda
Examveda

A man completes $$\frac{5}{8}$$ of a job in 10 days. At this rate, how many more days will it takes him to finish the job?

A. 5

B. 6

C. 7

D. $$7\frac{1}{2}$$

Answer: Option B

Solution(By Examveda Team)

$$\eqalign{ & {\text{Work}}\,{\text{done}} = \frac{5}{8} \cr & {\text{Balance}}\,{\text{work}} = {1 - \frac{5}{8}} = \frac{3}{8} \cr & {\text{Let}}\,{\text{the}}\,{\text{required}}\,{\text{number}}\,{\text{of}}\,{\text{days}}\,{\text{be}}\,x \cr & {\text{Then}}, \cr &\frac{5}{8}:\frac{3}{8} :: 10:x \cr & \Rightarrow \frac{5}{8} \times x = \frac{3}{8} \times 10 \cr & \Rightarrow x = {\frac{3}{8} \times 10 \times \frac{8}{5}} \cr & \Rightarrow x = 6 \cr} $$

This Question Belongs to Arithmetic Ability >> Chain Rule

Join The Discussion

Related Questions on Chain Rule