A metal with body centred cubic (bcc) structure shows the first (i.e. smallest angle) diffraction peak at a Bragg angle of θ = 30°. The wavelength of X-ray used is 2.1\[{{\rm{\dot A}}}\] . The volume of the primitive unit cell of the metal is
A. \[{\rm{26}}{\rm{.2}}{\left( {{\rm{\dot A}}} \right)^3}\]
B. \[{\rm{13}}{\rm{.1}}{\left( {{\rm{\dot A}}} \right)^3}\]
C. \[{\rm{9}}{\rm{.3}}{\left( {{\rm{\dot A}}} \right)^3}\]
D. \[{\rm{4}}{\rm{.6}}{\left( {{\rm{\dot A}}} \right)^3}\]
Answer: Option C
The valence electrons do not directly determine the following property of a metal
A. electrical conductivity
B. thermal conductivity
C. shear modulus
D. metallic lustre
A. $${\left( {\frac{{2Q}}{P}} \right)^{ - 6}}$$
B. $${\left( {\frac{Q}{P}} \right)^{ - 6}}$$
C. $${\left( {\frac{P}{{2Q}}} \right)^{ - 6}}$$
D. $${\left( {\frac{P}{Q}} \right)^{ - 6}}$$
A. $$N\mu \coth \left( {\frac{{\mu B}}{{{k_B}T}}} \right)$$
B. $$N\mu \tanh \left( {\frac{{\mu B}}{{{k_B}T}}} \right)$$
C. $$N\mu \sinh \left( {\frac{{\mu B}}{{{k_B}T}}} \right)$$
D. $$N\mu \cosh \left( {\frac{{\mu B}}{{{k_B}T}}} \right)$$
A. $$\sqrt {2C\left( {\frac{1}{{{M_1}}} + \frac{1}{{{M_2}}}} \right)} $$
B. $$\sqrt {C\left( {\frac{1}{{2{M_1}}} + \frac{1}{{{M_2}}}} \right)} $$
C. $$\sqrt {C\left( {\frac{1}{{{M_1}}} + \frac{1}{{2{M_2}}}} \right)} $$
D. zero

Join The Discussion