A normal random variable X has following probability density function $${{\text{f}}_{\text{x}}}\left( {\text{x}} \right) = \frac{1}{{\sqrt {8\pi } }}{{\text{e}}^{ - \left\{ {\frac{{{{\left( {{\text{x}} - 1} \right)}^2}}}{8}} \right\}}},\, - \infty < {\text{x}} \leqslant \infty .$$
Then $$\int\limits_1^\infty {{{\text{f}}_{\text{x}}}\left( {\text{x}} \right){\text{dx}}} $$ is
A. 0
B. $$\frac{1}{2}$$
C. $$1 - \frac{1}{{\text{e}}}$$
D. 1
Answer: Option B
Related Questions on Probability and Statistics
A coin is tossed 4 times. What is the probability of getting heads exactly 3 times?
A. $$\frac{1}{4}$$
B. $$\frac{3}{8}$$
C. $$\frac{1}{2}$$
D. $$\frac{3}{4}$$
A. 1 and $$\frac{1}{3}$$
B. $$\frac{1}{3}$$ and 1
C. 1 and $$\frac{4}{3}$$
D. $$\frac{1}{3}$$ and $$\frac{4}{3}$$
A. E(XY) = E(X) E(Y)
B. Cov (X, Y) = 0
C. Var (X + Y) = Var (X) + Var (Y)
D. E(X2Y2) = (E(X))2 (E(Y))2

Join The Discussion