A one-dimensional harmonic oscillator carrying a charge -q is placed in a uniform electric field $$\overrightarrow {\bf{E}} $$ along the positive X-axis. The corresponding Hamiltonian operator is
A. $$\frac{{{\hbar ^2}}}{{2m}}\frac{{{d^2}}}{{d{x^2}}} + \frac{1}{2}k{x^2} + qEx$$
B. $$\frac{{{\hbar ^2}}}{{2m}}\frac{{{d^2}}}{{d{x^2}}} + \frac{1}{2}k{x^2} - qEx$$
C. $$ - \frac{{{\hbar ^2}}}{{2m}}\frac{{{d^2}}}{{d{x^2}}} + \frac{1}{2}k{x^2} + qEx$$
D. $$ - \frac{{{\hbar ^2}}}{{2m}}\frac{{{d^2}}}{{d{x^2}}} + \frac{1}{2}k{x^2} - qEx$$
Answer: Option D
Join The Discussion