A particle of mass m is confined in the potential

\[V\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
{\frac{1}{2}m{\omega ^2}{x^2},}&{{\text{for }}x < 0} \\
{\infty ,}&{{\text{for }}x \leqslant 0}
\end{array}} \right.\]
Let the wave function of the particle be given by $$\psi \left( x \right) = - \frac{1}{{\sqrt 5 }}{\psi _0} + \frac{2}{{\sqrt 5 }}{\psi _1}$$
where $${\psi _0}$$ and $${\psi _1}$$ are the eigen functions of the ground state and the first excited slate respectively. The expectation value of the energy is
A. $$\frac{{31}}{{10}}\hbar \omega $$
B. $$\frac{{25}}{{10}}\hbar \omega $$
C. $$\frac{{13}}{{10}}\hbar \omega $$
D. $$\frac{{11}}{{10}}\hbar \omega $$
Answer: Option C
Join The Discussion