Examveda

A plane electromagnetic wave is given by $${E_0}\left( {{\bf{\hat x}} + {e^{i\delta }}{\bf{\hat y}}} \right)\exp \left\{ {i\left( {kz - \omega t} \right)} \right\}.$$      At a given location, the number of times $$\overrightarrow {\bf{E}} $$ vanishes in 1s is

A. an integer near $$\frac{\omega }{\pi }$$ when δ = nπ and zero when δ ≠ nπ, n is integer

B. an integer near $$\frac{\omega }{\pi }$$ and is independent of δ

C. an integer near $$\frac{\omega }{{2\pi }}$$ when δ = nπ and zero when δ ≠ nπ, n is integer

D. an integer near $$\frac{\omega }{{2\pi }}$$ and is independent of δ

Answer: Option D


This Question Belongs to Engineering Physics >> Electromagnetic Theory

Join The Discussion

Related Questions on Electromagnetic Theory

Which one of the following current densities, $$\overrightarrow {\bf{J}} $$ can generate the magnetic vector potential $$\overrightarrow {\bf{A}} = \left( {{y^2}{\bf{\hat i}} + {x^2}{\bf{\hat j}}} \right)?$$

A. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} + y{\bf{\hat j}}} \right)$$

B. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} + {\bf{\hat J}}} \right)$$

C. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} - {\bf{\hat j}}} \right)$$

D. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} - y{\bf{\hat j}}} \right)$$