A plane electromagnetic wave is given by $${E_0}\left( {{\bf{\hat x}} + {e^{i\delta }}{\bf{\hat y}}} \right)\exp \left\{ {i\left( {kz - \omega t} \right)} \right\}.$$ At a given location, the number of times $$\overrightarrow {\bf{E}} $$ vanishes in 1s is
A. an integer near $$\frac{\omega }{\pi }$$ when δ = nπ and zero when δ ≠ nπ, n is integer
B. an integer near $$\frac{\omega }{\pi }$$ and is independent of δ
C. an integer near $$\frac{\omega }{{2\pi }}$$ when δ = nπ and zero when δ ≠ nπ, n is integer
D. an integer near $$\frac{\omega }{{2\pi }}$$ and is independent of δ
Answer: Option D
A. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} + y{\bf{\hat j}}} \right)$$
B. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} + {\bf{\hat J}}} \right)$$
C. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} - {\bf{\hat j}}} \right)$$
D. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} - y{\bf{\hat j}}} \right)$$
A. 0.033 μm
B. 0.330 μm
C. 3.300 μm
D. 33.000 μm
A. $${\bf{\hat z}}k$$
B. $${\bf{\hat x}}k\sin \alpha + {\bf{\hat y}}k\cos \alpha $$
C. $${\bf{\hat x}}k\cos \alpha + {\bf{\hat y}}k\cos \alpha $$
D. $$ - {\bf{\hat z}}k$$
A. vp = vg
B. vp = $${\text{v}}_{\text{g}}^{\frac{1}{2}}$$
C. vp vg = c2
D. vg = $${\text{v}}_{\text{p}}^{\frac{1}{2}}$$
Join The Discussion