A plane electromagnetic wave of frequency ω is incident normally on an air-dielectric interface. The dielectric is linear, isotropic, non-magnetic and its refractive index is n. The reflectance (R) and transmittance (T) from the interface are
A. $$R = {\left( {\frac{{n - 1}}{{n + 1}}} \right)^2},\,T = \frac{{4n}}{{{{\left( {n + 1} \right)}^2}}}$$
B. $$R = - \left( {\frac{{n - 1}}{{n + 1}}} \right),\,T = \frac{2}{{{{\left( {n + 1} \right)}^2}}}$$
C. $$R = {\left( {\frac{{n - 1}}{{n + 1}}} \right)^3},\,T = \frac{{4{n^3}}}{{{{\left( {n + 1} \right)}^3}}}$$
D. $$R = \frac{{{{\left( {n - 1} \right)}^2}}}{{n + 1}},\,T = \frac{{4{n^2}}}{{{{\left( {n + 1} \right)}^2}}}$$
Answer: Option A
A. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} + y{\bf{\hat j}}} \right)$$
B. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} + {\bf{\hat J}}} \right)$$
C. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} - {\bf{\hat j}}} \right)$$
D. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} - y{\bf{\hat j}}} \right)$$
A. 0.033 μm
B. 0.330 μm
C. 3.300 μm
D. 33.000 μm
A. $${\bf{\hat z}}k$$
B. $${\bf{\hat x}}k\sin \alpha + {\bf{\hat y}}k\cos \alpha $$
C. $${\bf{\hat x}}k\cos \alpha + {\bf{\hat y}}k\cos \alpha $$
D. $$ - {\bf{\hat z}}k$$
A. vp = vg
B. vp = $${\text{v}}_{\text{g}}^{\frac{1}{2}}$$
C. vp vg = c2
D. vg = $${\text{v}}_{\text{p}}^{\frac{1}{2}}$$
Join The Discussion