Examveda

A plane electromagnetic wave travelling in vacuum is incident normally on a non-magnetic, non-absorbing medium of refractive index n. The incident (Ei), reflected (Er) and transmitted (Et) electric fields are given as
Ei = E exp[i(kz - ωt)], Er = E0r exp[i(krz - ωt)], Et = E0t exp[i(ktz - ωt)]
If E = 2 V/m and n = 1.5, then the application of appropriate boundary conditions leads to

A. $${E_{0r}} = - \frac{3}{5}V/m,\,{E_{0t}} = \frac{7}{5}V/m$$

B. $${E_{0r}} = - \frac{1}{5}V/m,\,{E_{0t}} = \frac{8}{5}V/m$$

C. $${E_{0r}} = - \frac{2}{5}V/m,\,{E_{0t}} = \frac{8}{5}V/m$$

D. $${E_{0r}} = \frac{4}{5}V/m,\,{E_{0t}} = \frac{6}{5}V/m$$

Answer: Option C


This Question Belongs to Engineering Physics >> Electromagnetic Theory

Join The Discussion

Related Questions on Electromagnetic Theory

Which one of the following current densities, $$\overrightarrow {\bf{J}} $$ can generate the magnetic vector potential $$\overrightarrow {\bf{A}} = \left( {{y^2}{\bf{\hat i}} + {x^2}{\bf{\hat j}}} \right)?$$

A. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} + y{\bf{\hat j}}} \right)$$

B. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} + {\bf{\hat J}}} \right)$$

C. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} - {\bf{\hat j}}} \right)$$

D. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} - y{\bf{\hat j}}} \right)$$