A plane electromagnetic wave travelling in vacuum is incident normally on a non-magnetic, non-absorbing medium of refractive index n. The incident (Ei), reflected (Er) and transmitted (Et) electric fields are given as
Ei = E exp[i(kz - ωt)], Er = E0r exp[i(krz - ωt)], Et = E0t exp[i(ktz - ωt)]
If E = 2 V/m and n = 1.5, then the application of appropriate boundary conditions leads to
A. $${E_{0r}} = - \frac{3}{5}V/m,\,{E_{0t}} = \frac{7}{5}V/m$$
B. $${E_{0r}} = - \frac{1}{5}V/m,\,{E_{0t}} = \frac{8}{5}V/m$$
C. $${E_{0r}} = - \frac{2}{5}V/m,\,{E_{0t}} = \frac{8}{5}V/m$$
D. $${E_{0r}} = \frac{4}{5}V/m,\,{E_{0t}} = \frac{6}{5}V/m$$
Answer: Option C
A. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} + y{\bf{\hat j}}} \right)$$
B. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} + {\bf{\hat J}}} \right)$$
C. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} - {\bf{\hat j}}} \right)$$
D. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} - y{\bf{\hat j}}} \right)$$
A. 0.033 μm
B. 0.330 μm
C. 3.300 μm
D. 33.000 μm
A. $${\bf{\hat z}}k$$
B. $${\bf{\hat x}}k\sin \alpha + {\bf{\hat y}}k\cos \alpha $$
C. $${\bf{\hat x}}k\cos \alpha + {\bf{\hat y}}k\cos \alpha $$
D. $$ - {\bf{\hat z}}k$$
A. vp = vg
B. vp = $${\text{v}}_{\text{g}}^{\frac{1}{2}}$$
C. vp vg = c2
D. vg = $${\text{v}}_{\text{p}}^{\frac{1}{2}}$$
Join The Discussion