A rod of length L with uniform charge density $$\lambda $$ per unit length is in the XY-plane and rotating about Z-axis passing through one of its edge with an angular
velocity $$\overrightarrow \omega $$ as shown in the figure below. $$\left( {{\bf{\hat r}},\,\hat \phi ,\,{\bf{\hat z}}} \right)$$ refer to the unit vectors at Q, $$\overrightarrow {\bf{A}} $$ is the vector potential at a distance d from the origin O along Z-axis for d ≪ L and $$\overrightarrow {\bf{J}} $$ is the current density due to the motion of the rod. Which one of the following statements is correct?

A. $$\overrightarrow {\bf{J}} {\text{ along }}{\bf{\hat r}};\overrightarrow {\bf{A}} {\text{ along }}{\bf{\hat z}};\left| {\overrightarrow {\bf{A}} } \right| \propto \frac{1}{d}$$
B. $$\overrightarrow {\bf{J}} {\text{ along }}\hat \phi ;\overrightarrow {\bf{A}} {\text{ along }}\hat \phi ;\left| {\overrightarrow {\bf{A}} } \right| \propto \frac{1}{{{d^2}}}$$
C. $$\overrightarrow {\bf{J}} {\text{ along }}{\bf{\hat r}};\overrightarrow {\bf{A}} {\text{ along }}{\bf{\hat z}};\left| {\overrightarrow {\bf{A}} } \right| \propto \frac{1}{{{d^2}}}$$
D. $$\overrightarrow {\bf{J}} {\text{ along }}\hat \phi ;\overrightarrow {\bf{A}} {\text{ along }}\hat \phi ;\left| {\overrightarrow {\bf{A}} } \right| \propto \frac{1}{d}$$
Answer: Option D
A. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} + y{\bf{\hat j}}} \right)$$
B. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} + {\bf{\hat J}}} \right)$$
C. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} - {\bf{\hat j}}} \right)$$
D. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} - y{\bf{\hat j}}} \right)$$
A. 0.033 μm
B. 0.330 μm
C. 3.300 μm
D. 33.000 μm
A. $${\bf{\hat z}}k$$
B. $${\bf{\hat x}}k\sin \alpha + {\bf{\hat y}}k\cos \alpha $$
C. $${\bf{\hat x}}k\cos \alpha + {\bf{\hat y}}k\cos \alpha $$
D. $$ - {\bf{\hat z}}k$$
A. vp = vg
B. vp = $${\text{v}}_{\text{g}}^{\frac{1}{2}}$$
C. vp vg = c2
D. vg = $${\text{v}}_{\text{p}}^{\frac{1}{2}}$$

Join The Discussion