A system in a normalized state $$\left| \psi \right\rangle = {c_1}\left| {{\alpha _1}} \right\rangle + {c_2}\left| {{\alpha _2}} \right\rangle $$ with $$\left| {{\alpha _1}} \right\rangle $$ and $$\left| {{\alpha _2}} \right\rangle $$ representing two different eigen states of the system requires that the constants c1 and c2 must satisfy the condition
A. $$\left| {{c_1}} \right| \cdot \left| {{c_2}} \right| = 1$$
B. $$\left| {{c_1}} \right| + \left| {{c_2}} \right| = 1$$
C. $${\left( {\left| {{c_1}} \right| + \left| {{c_2}} \right|} \right)^2} = 1$$
D. $${\left| {{c_1}} \right|^2} + {\left| {{c_2}} \right|^2} = 1$$
Answer: Option D
Join The Discussion