A thin conducting wire is bent into a circular loop of radius r and placed in a time dependent magnetic field of magnetic induction.
$$\overrightarrow {\bf{B}} \left( t \right) = {B_0}{e^{ - \alpha t}}{{\bf{\hat e}}_z},\,\,\left( {{B_0} > 0{\text{ and }}\alpha > 0} \right)$$
such that, the plane of the loop is perpendicular to $$\overrightarrow {\bf{B}} \left( t \right).$$ Then the induced emf in the loop is
A. πr2 αB0 e-αt
B. πr2 B0 e-αt
C. -πr2 αB0 e-αt
D. -πr2 B0 e-αt
Answer: Option A
Related Questions on Electromagnetic Theory
A. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} + y{\bf{\hat j}}} \right)$$
B. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} + {\bf{\hat J}}} \right)$$
C. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} - {\bf{\hat j}}} \right)$$
D. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} - y{\bf{\hat j}}} \right)$$
A. 0.033 μm
B. 0.330 μm
C. 3.300 μm
D. 33.000 μm
A. $${\bf{\hat z}}k$$
B. $${\bf{\hat x}}k\sin \alpha + {\bf{\hat y}}k\cos \alpha $$
C. $${\bf{\hat x}}k\cos \alpha + {\bf{\hat y}}k\cos \alpha $$
D. $$ - {\bf{\hat z}}k$$
A. vp = vg
B. vp = $${\text{v}}_{\text{g}}^{\frac{1}{2}}$$
C. vp vg = c2
D. vg = $${\text{v}}_{\text{p}}^{\frac{1}{2}}$$
Join The Discussion