Examveda

A thin conducting wire is bent into a circular loop of radius r and placed in a time dependent magnetic field of magnetic induction.
$$\overrightarrow {\bf{B}} \left( t \right) = {B_0}{e^{ - \alpha t}}{{\bf{\hat e}}_z},\,\,\left( {{B_0} > 0{\text{ and }}\alpha > 0} \right)$$
such that, the plane of the loop is perpendicular to $$\overrightarrow {\bf{B}} \left( t \right).$$ Then the induced emf in the loop is

A. πr2 αB0 e-αt

B. πr2 B0 e-αt

C. -πr2 αB0 e-αt

D. -πr2 B0 e-αt

Answer: Option A


This Question Belongs to Engineering Physics >> Electromagnetic Theory

Join The Discussion

Related Questions on Electromagnetic Theory

Which one of the following current densities, $$\overrightarrow {\bf{J}} $$ can generate the magnetic vector potential $$\overrightarrow {\bf{A}} = \left( {{y^2}{\bf{\hat i}} + {x^2}{\bf{\hat j}}} \right)?$$

A. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} + y{\bf{\hat j}}} \right)$$

B. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} + {\bf{\hat J}}} \right)$$

C. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} - {\bf{\hat j}}} \right)$$

D. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} - y{\bf{\hat j}}} \right)$$