ABC is an equilateral triangle with side 12 cm and AD is the median. Find the length of GD is G is the centroid of ΔABC.
A. 6√3 cm
B. 3√3 cm
C. 4√3 cm
D. 2√3 cm
Answer: Option D
Solution (By Examveda Team)

$$\eqalign{ & {\text{AD}} = \frac{{\sqrt 3 }}{2} \times {\text{Side}} \cr & {\text{AD}} = \frac{{\sqrt 3 }}{2} \times 12 = 6\sqrt 3 \cr & {\text{GD}} = 6\sqrt 3 \times \frac{1}{3} = 2\sqrt 3 {\text{ cm}} \cr} $$
Related Questions on Geometry
A. $$\frac{{23\sqrt {21} }}{4}$$
B. $$\frac{{15\sqrt {21} }}{4}$$
C. $$\frac{{17\sqrt {21} }}{5}$$
D. $$\frac{{23\sqrt {21} }}{5}$$
In the given figure, ∠ONY = 50° and ∠OMY = 15°. Then the value of the ∠MON is

A. 30°
B. 40°
C. 20°
D. 70°


Join The Discussion