ABCD is a cyclic quadrilateral. Side AB and DC, when produced, meet at E and sides AD and BC when produced, meet at F. If ∠ADC = 76° and ∠AED = 55°, then ∠AFB is equal to:
A. 26°
B. 29°
C. 34°
D. 27°
Answer: Option D
Solution (By Examveda Team)

∠ADC = 76° ; ∠AED = 55°
∠ADC + ∠ABC = 180°
[cyclic quadrilateral]
∠ABC = 180° - 76° = 104°
In ΔADE
∠A + ∠D + ∠E = 180°
∠A = 180° - 76° - 55° = 49°
In ΔABF
∠A + ∠B + ∠F = 180°
∠F = 180° - 104° - 49° = 27°
Related Questions on Geometry
A. $$\frac{{23\sqrt {21} }}{4}$$
B. $$\frac{{15\sqrt {21} }}{4}$$
C. $$\frac{{17\sqrt {21} }}{5}$$
D. $$\frac{{23\sqrt {21} }}{5}$$
In the given figure, ∠ONY = 50° and ∠OMY = 15°. Then the value of the ∠MON is

A. 30°
B. 40°
C. 20°
D. 70°


Join The Discussion