ABCD is a cyclic trapezium whose sides AD and BC are parallel to each other; if ∠ABC = 75° then the measure of ∠BCD is:
A. 75°
B. 95°
C. 45°
D. 105°
Answer: Option A
Solution (By Examveda Team)

According to figure
⇒ AD || BC
⇒ ∠ABC = 75°
Then
⇒ ∠ABC + ∠ADC = 180°
⇒ 75° + ∠ADC = 180°
⇒ ∠ADC = 180° - 75°
⇒ ∠ADC = 105°
⇒ As we know in a cyclic trapezium
∠ADC + ∠DCB = 180°
(AD || BC, corresponding angle)
⇒ 105° + ∠DCB = 180°
⇒ ∠DCB = 75°
Related Questions on Geometry
A. $$\frac{{23\sqrt {21} }}{4}$$
B. $$\frac{{15\sqrt {21} }}{4}$$
C. $$\frac{{17\sqrt {21} }}{5}$$
D. $$\frac{{23\sqrt {21} }}{5}$$
In the given figure, ∠ONY = 50° and ∠OMY = 15°. Then the value of the ∠MON is

A. 30°
B. 40°
C. 20°
D. 70°


Join The Discussion