Examveda
Examveda

An atomic state of hydrogen is represented by following wave function $$\psi \left( {r,\,\theta ,\,\phi } \right) = \frac{1}{{\sqrt 2 }}{\left( {\frac{1}{{{a_0}}}} \right)^{\frac{3}{2}}}\left( {1 - \frac{r}{{2{a_0}}}} \right){e^{\frac{{ - r}}{{2{a_0}}}}}\cos \theta $$         where, a0 is a constant. The quantum numbers of the state are

A. l = 0, m = 0, n = 1

B. l = 1, m = 1, n = 2

C. l = 1, m = 0, n = 2

D. l = 2, m = 0, n = 3

Answer: Option B


This Question Belongs to Engineering Physics >> Quantum Mechanics

Join The Discussion

Related Questions on Quantum Mechanics

A particle is placed in a one-dimensional box of size L along the X-axis, (0 < x < L). Which of the following is true?

A. In the ground state, the probability of finding the particle in the interval $$\left( {\frac{L}{4},\,\frac{{3L}}{4}} \right)$$  is half

B. In the first excited state, the probability of finding the particle in the interval $$\left( {\frac{L}{4},\,\frac{{3L}}{4}} \right)$$  is half This also holds for states with n = 4, 6, 8, . . . .

C. For an arbitrary state $$\left| \psi \right\rangle ,$$  the probability of finding the particle in the left half of the well is half

D. In the ground state, the particle has a definite momentum