An electromagnetic wave is propagating in free space in the Z-direction. If the electric field is given by $$E = \cos \left( {\omega t - kz} \right){\bf{\hat i}},$$ where $$\omega t = ck,$$ then the magnetic field is given by
A. $$\overrightarrow {\bf{B}} = \frac{1}{c}\cos \left( {\omega t - kz} \right){\bf{\hat j}}$$
B. $$\overrightarrow {\bf{B}} = \frac{1}{c}\sin \left( {\omega t - kz} \right){\bf{\hat j}}$$
C. $$\overrightarrow {\bf{B}} = \frac{1}{c}\cos \left( {\omega t - kz} \right){\bf{\hat i}}$$
D. $$\overrightarrow {\bf{B}} = \frac{1}{c}\cos \left( {\omega t - kz} \right){\bf{\hat j\hat i}}$$
Answer: Option A
A. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} + y{\bf{\hat j}}} \right)$$
B. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} + {\bf{\hat J}}} \right)$$
C. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} - {\bf{\hat j}}} \right)$$
D. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} - y{\bf{\hat j}}} \right)$$
A. 0.033 μm
B. 0.330 μm
C. 3.300 μm
D. 33.000 μm
A. $${\bf{\hat z}}k$$
B. $${\bf{\hat x}}k\sin \alpha + {\bf{\hat y}}k\cos \alpha $$
C. $${\bf{\hat x}}k\cos \alpha + {\bf{\hat y}}k\cos \alpha $$
D. $$ - {\bf{\hat z}}k$$
A. vp = vg
B. vp = $${\text{v}}_{\text{g}}^{\frac{1}{2}}$$
C. vp vg = c2
D. vg = $${\text{v}}_{\text{p}}^{\frac{1}{2}}$$
Join The Discussion