Examveda
Examveda

An electromagnetic wave is propagating in free space in the Z-direction. If the electric field is given by $$E = \cos \left( {\omega t - kz} \right){\bf{\hat i}},$$    where $$\omega t = ck,$$  then the magnetic field is given by

A. $$\overrightarrow {\bf{B}} = \frac{1}{c}\cos \left( {\omega t - kz} \right){\bf{\hat j}}$$

B. $$\overrightarrow {\bf{B}} = \frac{1}{c}\sin \left( {\omega t - kz} \right){\bf{\hat j}}$$

C. $$\overrightarrow {\bf{B}} = \frac{1}{c}\cos \left( {\omega t - kz} \right){\bf{\hat i}}$$

D. $$\overrightarrow {\bf{B}} = \frac{1}{c}\cos \left( {\omega t - kz} \right){\bf{\hat j\hat i}}$$

Answer: Option A


This Question Belongs to Engineering Physics >> Electromagnetic Theory

Join The Discussion

Related Questions on Electromagnetic Theory

Which one of the following current densities, $$\overrightarrow {\bf{J}} $$ can generate the magnetic vector potential $$\overrightarrow {\bf{A}} = \left( {{y^2}{\bf{\hat i}} + {x^2}{\bf{\hat j}}} \right)?$$

A. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} + y{\bf{\hat j}}} \right)$$

B. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} + {\bf{\hat J}}} \right)$$

C. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} - {\bf{\hat j}}} \right)$$

D. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} - y{\bf{\hat j}}} \right)$$