An extrinsic semiconductor sample of cross-section A and length L is doped in such a way that the dopping concentration varies as $${N_D}\left( x \right) = {N_0}\exp \left( { - \frac{x}{L}} \right),\,{N_0}$$ is a constant. Assume that the mobility $$\mu $$ of the majority carriers remains constant. The resistance R of the sample is given by
A. $$R = \frac{L}{{A\mu e{N_0}}}\left[ {\exp \left( {1.0} \right) - 1} \right]$$
B. $$R = \frac{L}{{\mu e{N_0}}}\left[ {\exp \left( {1.0} \right) - 1} \right]$$
C. $$R = \frac{L}{{A\mu e{N_0}}}\left[ {\exp \left( { - 1.0} \right) - 1} \right]$$
D. $$R = \frac{L}{{A\mu e{N_0}}}$$
Answer: Option C
The valence electrons do not directly determine the following property of a metal
A. electrical conductivity
B. thermal conductivity
C. shear modulus
D. metallic lustre
A. $${\left( {\frac{{2Q}}{P}} \right)^{ - 6}}$$
B. $${\left( {\frac{Q}{P}} \right)^{ - 6}}$$
C. $${\left( {\frac{P}{{2Q}}} \right)^{ - 6}}$$
D. $${\left( {\frac{P}{Q}} \right)^{ - 6}}$$
A. $$N\mu \coth \left( {\frac{{\mu B}}{{{k_B}T}}} \right)$$
B. $$N\mu \tanh \left( {\frac{{\mu B}}{{{k_B}T}}} \right)$$
C. $$N\mu \sinh \left( {\frac{{\mu B}}{{{k_B}T}}} \right)$$
D. $$N\mu \cosh \left( {\frac{{\mu B}}{{{k_B}T}}} \right)$$
A. $$\sqrt {2C\left( {\frac{1}{{{M_1}}} + \frac{1}{{{M_2}}}} \right)} $$
B. $$\sqrt {C\left( {\frac{1}{{2{M_1}}} + \frac{1}{{{M_2}}}} \right)} $$
C. $$\sqrt {C\left( {\frac{1}{{{M_1}}} + \frac{1}{{2{M_2}}}} \right)} $$
D. zero
Join The Discussion