Examveda

An infinitely long wire carrying a current $$I\left( t \right) = {I_0}\cos \left( {\omega t} \right)$$    is placed at a distance a from a square loop of side a as shown in the figure. If the resistance of the loop is R, then the amplitude of the induced current in the loop is
Electromagnetic Theory mcq question image

A. $$\frac{{{\mu _0}}}{{2\pi }} \cdot \frac{{a{I_0}\omega }}{R}\ln 2$$

B. $$\frac{{{\mu _0}}}{\pi } \cdot \frac{{a{I_0}\omega }}{R}\ln 2$$

C. $$\frac{{2{\mu _0}}}{\pi } \cdot \frac{{a{I_0}\omega }}{R}\ln 2$$

D. $$\frac{{{\mu _0}}}{{2\pi }} \cdot \frac{{a{I_0}\omega }}{R}$$

Answer: Option A


This Question Belongs to Engineering Physics >> Electromagnetic Theory

Join The Discussion

Related Questions on Electromagnetic Theory

Which one of the following current densities, $$\overrightarrow {\bf{J}} $$ can generate the magnetic vector potential $$\overrightarrow {\bf{A}} = \left( {{y^2}{\bf{\hat i}} + {x^2}{\bf{\hat j}}} \right)?$$

A. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} + y{\bf{\hat j}}} \right)$$

B. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} + {\bf{\hat J}}} \right)$$

C. $$ - \frac{2}{{{\mu _0}}}\left( {{\bf{\hat i}} - {\bf{\hat j}}} \right)$$

D. $$\frac{2}{{{\mu _0}}}\left( {x{\bf{\hat i}} - y{\bf{\hat j}}} \right)$$