An unbalanced dice (with 6 faces, numbered from 1 to 6) is thrown. The probability that the face value is odd is 90% of the probability that the face value is even. The probability of getting any even numbered face is the same.
If the probability that the face is even given that it is greater than 3 is 0.75, which one of the following options is closest to the probability that the face value exceeds 3?
A. 0.453
B. 0.468
C. 0.485
D. 0.492
Answer: Option B
Related Questions on Probability and Statistics
A coin is tossed 4 times. What is the probability of getting heads exactly 3 times?
A. $$\frac{1}{4}$$
B. $$\frac{3}{8}$$
C. $$\frac{1}{2}$$
D. $$\frac{3}{4}$$
A. 1 and $$\frac{1}{3}$$
B. $$\frac{1}{3}$$ and 1
C. 1 and $$\frac{4}{3}$$
D. $$\frac{1}{3}$$ and $$\frac{4}{3}$$
A. E(XY) = E(X) E(Y)
B. Cov (X, Y) = 0
C. Var (X + Y) = Var (X) + Var (Y)
D. E(X2Y2) = (E(X))2 (E(Y))2

Join The Discussion