An unitary matrix \[\left[ {\begin{array}{*{20}{c}} {a{e^{i\alpha }}}&b \\ {c{e^{i\beta }}}&d \end{array}} \right]\] is given, were a, b, c, d, α and β are real. The inverse of the matrix is
A. \[\left[ {\begin{array}{*{20}{c}} {a{e^{i\alpha }}}&{ - c{e^{i\beta }}} \\ b&d \end{array}} \right]\]
B. \[\left[ {\begin{array}{*{20}{c}} {a{e^{i\alpha }}}&{c{e^{i\beta }}} \\ b&d \end{array}} \right]\]
C. \[\left[ {\begin{array}{*{20}{c}} {a{e^{ - i\alpha }}}&b \\ {c{e^{ - i\beta }}}&d \end{array}} \right]\]
D. \[\left[ {\begin{array}{*{20}{c}} {a{e^{ - i\alpha }}}&{c{e^{ - i\beta }}} \\ b&d \end{array}} \right]\]
Answer: Option D
A. $$\frac{{1 + i}}{{\sqrt 2 }}a{\text{ and}} - \frac{{1 + i}}{{\sqrt 2 }}a$$
B. $$ia{\text{ and }} - ia$$
C. $$ia,\, - ia,\,\frac{{1 - i}}{{\sqrt 2 }}a{\text{ and}} - \frac{{1 - i}}{{\sqrt 2 }}a$$
D. $$\frac{{1 + i}}{{\sqrt 2 }}a,\, - \frac{{1 + i}}{{\sqrt 2 }}a,\,\frac{{1 - i}}{{\sqrt 2 }}a{\text{ and}} - \frac{{1 - i}}{{\sqrt 2 }}a$$
Which of the following functions of the complex variable z is not analytic everywhere?
A. ez
B. $$\sin \frac{{\text{z}}}{{\text{z}}}$$
C. e3
D. |z|3
A. \[\left( {1 - \sqrt 3 } \right){{{\bf{\hat i}}}^{\bf{'}}} + 3{{{\bf{\hat j}}}^{\bf{'}}} + \left( {1 + \sqrt 3 } \right){{{\bf{\hat k}}}^{\bf{'}}}\]
B. \[\left( {1 + \sqrt 3 } \right){{{\bf{\hat i}}}^{\bf{'}}} + 3{{{\bf{\hat j}}}^{\bf{'}}} + \left( {1 - \sqrt 3 } \right){{{\bf{\hat k}}}^{\bf{'}}}\]
C. \[\left( {1 - \sqrt 3 } \right){{{\bf{\hat i}}}^{\bf{'}}} + \left( {3 + \sqrt 3 } \right){{{\bf{\hat j}}}^{\bf{'}}} + 2{{{\bf{\hat k}}}^{\bf{'}}}\]
D. \[\left( {1 - \sqrt 3 } \right){{{\bf{\hat i}}}^{\bf{'}}} + \left( {3 - \sqrt 3 } \right){{{\bf{\hat j}}}^{\bf{'}}} + 2{{{\bf{\hat k}}}^{\bf{'}}}\]


Join The Discussion