Solution:
$$\eqalign{
& {\text{B}}{\text{.D}}{\text{.}}\,{\text{for}}\frac{3}{2}{\text{years}} = Rs.\,558 \cr
& {\text{B}}{\text{.D}}{\text{.}}\,{\text{for 2}}\,{\text{years}} \cr
& = Rs.\left( {558 \times \frac{2}{3} \times 2} \right) \cr
& = Rs.\,744 \cr
& {\text{T}}{\text{.D}}{\text{.}}\,{\text{for}}\,{\text{2}}\,{\text{years}} = Rs.\,600 \cr
& \therefore {\text{Sum}} = \frac{{B.D. \times T.D.}}{{B.D. - T.D.}} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = Rs.\,\left( {\frac{{744 \times 600}}{{144}}} \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = Rs.\,3100 \cr
& {\text{Thus,}}\,{\text{Rs}}{\text{.}}\,{\text{744}}\,{\text{is}}\,{\text{S}}{\text{.I}}{\text{.}}\,{\text{on}}\,{\text{Rs}}{\text{.}}\,{\text{3100}}\,{\text{for}}\,{\text{2}}\,{\text{years}}{\text{.}} \cr
& \therefore {\text{Rate}} = \left( {\frac{{100 \times 744}}{{3100 \times 2}}} \right)\% \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 12\% \cr} $$