Answer & Solution
Answer: Option B
Solution:
Side of square PQRS
$$\eqalign{
& = \frac{{{\text{Diameter of circle}}}}{{\sqrt 2 }} \cr
& = \frac{{14\sqrt 2 \times 2}}{{\sqrt 2 }} \cr
& = 28{\text{ cm}} \cr} $$
In ΔABO
AB = a
OB = 14√2
AO = 14 + 2a
OB
2 = AB
2 + OA
2
(14√2)
2 = a
2 + (14 + 2a)
2
196 × 2 = a
2 + 196 + 4a
2 + 56a
5a
2 + 56a - 196 = 0
5a
2 + 70a - 14a - 196 = 0
5a(a + 14) - 14(a + 14) = 0
(a + 14)(5a - 14) = 0
a = -14, a = $$\frac{{14}}{5}$$
Side of small square = 2a = $$\frac{{28}}{5}$$
Required Area $$ = 4 \times {\left( {\frac{{28}}{5}} \right)^2} = 125.44{\text{ c}}{{\text{m}}^2}$$