Assume that the duration in minutes of a telephone conversion follows the expo-nential distribution $${\text{f}}\left( {\text{x}} \right) = \frac{1}{5}{{\text{e}}^{ - \frac{{\text{x}}}{5}}},\,{\text{x}} \geqslant {\text{0}}{\text{.}}$$ The probability that the conversion will exceed five minutes is
A. $$\frac{1}{{\text{e}}}$$
B. $$1 - \frac{1}{{\text{e}}}$$
C. $$\frac{1}{{{{\text{e}}^2}}}$$
D. $$1 - \frac{1}{{{{\text{e}}^2}}}$$
Answer: Option A
Related Questions on Probability and Statistics
A coin is tossed 4 times. What is the probability of getting heads exactly 3 times?
A. $$\frac{1}{4}$$
B. $$\frac{3}{8}$$
C. $$\frac{1}{2}$$
D. $$\frac{3}{4}$$
A. 1 and $$\frac{1}{3}$$
B. $$\frac{1}{3}$$ and 1
C. 1 and $$\frac{4}{3}$$
D. $$\frac{1}{3}$$ and $$\frac{4}{3}$$
A. E(XY) = E(X) E(Y)
B. Cov (X, Y) = 0
C. Var (X + Y) = Var (X) + Var (Y)
D. E(X2Y2) = (E(X))2 (E(Y))2

Join The Discussion